4C 機器分析 I 前期期末試験 No. 氏名

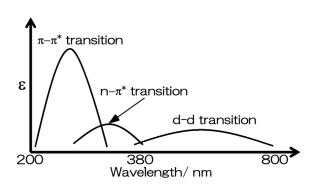
H26/7/25 8:45 - 10:15(90 分) 問題3枚,解答5枚 友野 和哲 A5 用紙·電卓

- * 計算問題は途中式が記載できるものは記載すること。途中式がないものは減点とする。
- 1. 英語は日本語に、日本語は英語に訳しなさい。不明瞭な文字は不正解とします。
 - (1) 機器分析 (2) 紫外可視吸収スペクトル (3) ligand (4) inductive effect (5) フランク-コンドン状態
- 2. 以下の問いに答えなさい。尚、日本語・英語どちらで答えても構いません。
 - Q1. It is very important to understand the definitions of accuracy and precision and to recognize the difference between precision and accuracy. (\underline{A}) is a measure of how close a measured analytical result is to the true answer. For most analytical work, the "true answer" is not usually known. We often work with an "accepted" true or "accepted reference value". (\underline{A}) is evaluated by analyzing known, standard samples. (\underline{B}) is a measure of how close replicate results on the same sample are to each other. A common analogy used to envision the difference between accuracy and precision is to imagine a bull's-eye target used by an archer. If all the arrows hit in the bull's-eye, the archer is both (adjective of (\underline{A})) (has hit the center) and (adjective of (\underline{B})) (all the arrow are close together). If the archer puts all the arrows into the target close together (a tight shot group) but to the upper left of the bull's-eye, the archer is (adjective of (\underline{B})) but not (adjective of (\underline{A})). If the arrows hit the target in many locations top, bottoms, center, left, and right of the center the archer is neither (adjective of (\underline{B})) nor (adjective of (\underline{A})).

【definition; 定義, arrow: 矢, bull's-eye: 標的, adjective:形容詞】

Q2. The molecule absorbs energy and an electron is promoted to one of the higher vibrational levels in the singlet state; this is a vibrationally (\underline{C} : ground, or excited) electronic state. The vibrationally excited molecule will rapidly relax to the lowest vibrational level of the electronic excited state S_1 . This relaxation or loss of energy is a radiationless process. Energy decreases but no light is emitted. (\underline{D} : What is the radiationless process called? Choose the following options; vibration relaxation, internal conversion, or intersystem crossing.) Now the molecule can return to the ground state S_0 by emitting a photon equal to the energy difference between the two levels. This is the process of (\underline{E}): excitation by photon absorption to a vibrationally excited state, followed by a rapid transition between two levels with the same spin state (singlet to singlet) that results in the emission of a photon. The emitted photon is of lower energy (longer wavelength) than the absorbed photon. The lifetime of the excited state is very short, on the order of 1–20ns, so (\underline{E}) is a virtually instantaneous emission of light following excitation.

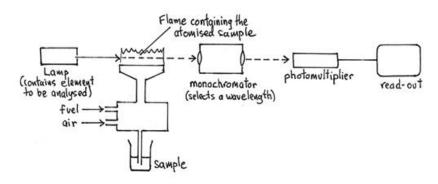
【vibrational relaxation: 振動緩和, internal conversion: 内部転換(変換), intersystem crossing:項間交差, photon: 光子(光を含む電磁波のこと), to the energy difference between the two levels: 2 つの準位のエネルギー差, virtually instantaneous AA; 事実上瞬間的な AA】


3. 共鳴構造をとる亜硝酸イオン (NO_2^-) の窒素-酸素間伸縮振動の波数 (cm^{-1}) を求めなさい。アボガドロ数 $N(6.022\times10^{23}\ mol^{-1})$,光速度 $c(3.00\times10^8\ m/s)$,単結合,二重結合,三重結合の力の定数 f は,それぞれ 500,1000,1500 Nm^{-1} である。尚,波数 ν (m^{-1}) と換算質量 μ の間には以下の関係式が成り立つ。

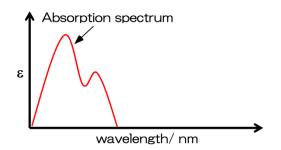
$$\nu = \frac{1}{2\pi c} \sqrt{\frac{f}{\mu}}$$

- 4. 以下の問いに答えなさい。
 - A) 次の電磁波を<u>長い波長から短い波長の順番に並べなさい</u>。ガンマ線, エックス線, 赤外線, 可視光線, マイクロ波, ラジオ波, 紫外線
 - B) (A)のそれぞれの電磁波が、何に対して相互作用するのかを赤外線を除いて、全て答えなさい。(例: 赤外線は原子同士の振動)
 - C) 赤外吸収スペクトルにおいて、1500cm⁻¹以下の領域は一般的に何と呼ばれているか、日本語と英語で答えなさい。
 - D) ラマンスペクトルは一般的に強度が大きいストークス線を用いる。 $\nu \nu_R$, ストークス線 ν_R , アンチストークス線 ν_R , の三つの波数 を、励起波数 ν_R と振動準位間の吸収波数 ν_R を用いて式として示しなさい。 (例: ν_R + ν_R ν_R ν_R + ν_R ν_R
 - E) 光のエネルギー[E], プランク定数[$h:6.63\times10^{-34}$ Js]とすると, 波長[λ], 振動数[ν], 波数 [ν], 光速度[$c:3.00\times10^8$ m/s]との間の<u>関係式を答えなさい</u>。尚,全ての記号を用いなさい。

$$\mathsf{E} = h() = h() = h()$$


- F) 紫外可視装置で測定する一般的な波長(wavelength)領域は 200~800nm である。これを<u>波数</u> (wavenumber)に換算しなさい。
- G) 電子スピンを矢印(↑or↓), 準位を横棒(─)として, <u>1 重項状態, 3 重項状態, 4 重項状態を</u> <u>描きなさい</u>。尚, スピン多重度(M)の式は次式である。M = 2S+1
- 5. 以下に, $\pi-\pi^*$ 遷移, $n-\pi^*$ 遷移,d-d遷移の吸収スペクトルを示した。 $\underline{吸収スペクトルに示すよう な順序(wavelength)と強度(<math>\epsilon$)になる理由を,次の語句を必ず用いて答えなさい。【語句:p軌道によって形成される分子軌道,選択則,偶関数,対称の軌道,可視光】

6. 以下にオレンジ \parallel の合成反応式を示した。出発原料であるスルファニル酸(Sulfanilic acid)と 2-ナ フトール(2-Naphthol)はともに無色である。また,オレンジ \parallel は,オレンジサファイア(宝石)と 比較して,濃いオレンジ色を示す。<u>濃いオレンジ色になる理由を,次の語句を必ず用いて答え</u>なさい。【語句:共役効果,共鳴効果,d-d 遷移, π - π *遷移】


7. 以下に装置概略図を示した。以下の装置概略図は、①原子吸光分析と原子発光分析のどちらの 概略図かを答え、その理由も答えなさい。また、②原子吸光分析が定性分析に不向きな理由も 測定原理から説明しなさい。

[出典:図] http://www.hsc.csu.edu.au/chemistry/core/monitoring/chem943/943net.html

8. 有機化合物の<u>吸光・蛍光・りん光・遅延蛍光・内部変換・項間交差の過程を</u>, Jablonski 図を用<u>いて説明</u>しなさい。尚,次の語句を必ず用いること。【語句:一重項,三重項,スピンの向き, Stokes シフト】。また,以下の図には吸光スペクトルを示した。<u>図 5 にならって,蛍光・りん光・</u>遅延蛍光のスペクトルを追加して書きなさい。スペクトルの形状も採点対象です。

*Stokes 線:赤外・ラマンの分野で講義した。光の非弾性散乱のことで、入射光に対して低波数に現れるラマン線をストークス線といいましたね。では、Stokes シフトとは…。

